ACS Medicinal Chemistry Letters

Biphenyl-Ethyl-Pyrrolidine Derivatives as Histamine H3 Receptor Modulators for the Treatment of Cognitive Disorders

Benjamin Blass*

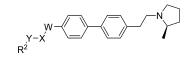
Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States

Title:	Biphenyl-Ethyl-Pyrrolidine Derivatives as Histamine H3 Receptor Modulators for the Treatment of Cognitive Disorders					
Patent Application Number:	WO2014110103	Publication date:	July 17, 2014			
Priority Application:	US 61750475	Priority date:	January 9, 2013			
Inventors:	Covel, Jonathan A.; Ren, Albert S.; Semple, Graeme; Tran, Thuy-Anh; Wei, Zheng; Xiong, Yifeng					
Assignee Company:	Arena Pharmaceuticals, Inc.					
Disease Area:	Cognitive Disorders	Biological Target:	Histamine H3			
Summary:	Histamine, a biogenic amine neurotransmitter first described by British scientists Henry H. Dale and P. P. Laidlaw in 1910, exerts its					
	influence on biological systems through a series of G-protein coupled receptors (GPCRs) designated H1, H2, H3, and H4. The H3					
	receptor in particular has been identified as an autoreceptor capable of controlling both the synthesis and release of stored					
	histamine. Activation of this receptor is associated with the release of additional neurotransmitters such as serotonin, acetylcholine,					
	dopamine, and noradrenaline. In addition, the H3 receptor is constitutively active, as signal transduction has been observed in the					
	absence of the natural ligand. These features indicate that a physiological response could be elicited from the H3 receptor systems					
	through the application of agonists, antagonists, and inverse agonists. This has led to an intense interest in the identification of novel					
	ligands capable of modulating the H3 system as a means of therapeutic intervention. Animal studies of H3 antagonists and inverse					
	agonists have indicated that compounds of these types could provide increased wakefulness, reduce the impact of somnolence					
	syndrome, attenuate the symptoms of narcolepsy, and have a positive impact on epilepsy. It has also been suggested that the H3					
	receptor may play a role in cognitive disorders such as Alzheimer's disease, attention deficit hyperactivity disorder (ADHD),					
	depression, and schizophrenia. The present discloses a series of compounds capable of modulating H3 receptor activity and may be					
	useful as therapeutic agents for the aforementioned conditions.					

Important Compound Classes:

 $W \rightarrow W$ R^2 R^2 R^2

Definitions:


 R^1 is C_1-C_4 alkyl; R^2 is selected from C_1-C_4 alkoxycarbonyl, carboxyl, and tetrazolyl; W is selected from C_1-C_4 alkylene, C_3-C_7 cycloalkylene, and carbonyl; or W is absent; X is selected from $-O_-$, $-NHC=O_-$, and carbonyl; or X is absent; and Y is selected from C_1-C_4 alkylene, C_3-C_7 cycloalkylene, and heterocyclylene; or Y is absent.

Received:January 4, 2015Published:February 06, 2015

Key Structures:

Entry	W	Х	Y	\mathbb{R}^2
1	**		1	CO ₂ H
2	CH ₂			CO ₂ H
3	CH ₂ CH ₂ CH ₂			CO ₂ H CO ₂ H
4	CH ₂ CH ₂	0	 CH ₂	CO ₂ H CO ₂ Et
5	CH ₂ CH ₂	0	CH ₂ CH ₂	CO ₂ Et CO ₂ H
3	CH ₂	0	CH ₂	
7	CH_2CH_2			N ^{∽N} , N ⁵ - N ⁵ N ≫∕
8	CH ₂ CH ₂			N=N N=N
9	CH_2CH_2			CO ₂ Me
10	$C(CH_3)_2$			CO ₂ H
11	CH ₂ CH ₂			CO ₂ Et
12	CH ₂ CH ₂	-NHC=O-	$C(CH_3)_2$	CO ₂ -tBu
13	CH ₂ CH ₂	-NHC=O-	CH(CH3) (S-isomer)	CO ₂ -tBu
16	softer stars	-NHC=O-	CH ₂ CH ₂ CH ₂	CO ₂ Me
24	CH ₂ CH ₂	-NHC=O-	CH ₂	CO ₂ Me
25	and a star			CO ₂ Me
27	softer store	-NHC=O-	CH_2	CO ₂ Me
33	softer by	-NHC=O-	CH ₂ CH ₂ CH ₂	CO ₂ H
37	CH ₂			N N N N N N N H
38		-NHC=O-	C(CH ₃) ₂	CO ₂ Me
43		-NHC=O-	CH ₂ CH ₂	CO ₂ H
45	CH ₂ CH ₂ CH ₂			CO ₂ H

Recent Review Articles:

Singh, M.; Jadhav, H. R. Histamine H3 receptor function and ligands: recent developments. *Mini Rev. Med. Chem.* 2013, 13 (1), 47–57.
Łazewska, D.; Kieć-Kononowicz, K. Recent advances in histamine H3 receptor antagonists/inverse agonists. *Expert Opin. Ther. Pat.* 2010, 20 (9), 1147–69.

Łażewska, D.; Kieć-Kononowicz, K. New developments around histamine H3 receptor antagonists/inverse agonists: a patent review (2010-present). *Expert Opin. Ther. Pat.* **2014**, *24* (1), 89–111.

Biological Assay:

Biological Data:

	IC ₅₀ H3R		IC50 H3R		IC ₅₀ H3R
Entry	(nM)	Entry	(nM)	Entry	(nM)
1	3.8	9	1.1	25	3.3
2	8.1	10	3.1	27	1.9
3	2.5	11	1.8	33	2.1
4	0.67	12	0.95	37	0.78
5	5.5	13	2.1	38	1.2
7	0.93	16	15	43	2.5
8	1.2	24	0.99	45	0.97

Claims:

44 Total claims

24 Composition of matter claims

Human H3 (H3R) HTRF cAMP assay.

- 19 Method of use claim
- 1 Process claim

AUTHOR INFORMATION

Corresponding Author

*Tel: 215-707-1085. E-mail: benjamin.blass@temple.edu.

Notes

The authors declare no competing financial interest.